首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments
Authors:Dai Li  Chen Dian-Fu  Liu Yu-Lei  Zhao Yang  Yang Fan  Yang Jin-Shu  Yang Wei-Jun
Institution:Institute of Cell Biology and Genetics, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
Abstract:

Background

Many species of the brine shrimp Artemia are found in various severe environments in many parts of the world where extreme salinity, high UV radiation levels, high pH, anoxia, large temperature fluctuations, and intermittent dry conditions are often recorded. To withstand adverse environments, Artemia undergoes an oviparous developmental pathway to release cysts whereas, under favorable conditions, swimming nauplius larvae are formed directly via an ovoviviparous pathway. In the former case these cysts have an extraordinary ability to keep the embryos protected from the harsh environment for long periods. This is achieved through the protection by a complex out-wrapping cyst shell. However, the formation and function of the cyst shell is complex; the details remain largely unclear.

Principal Finding

A shell gland-specific gene (SGEG2) was cloned and identified from a suppression subtractive hybridization library. Western blot analysis showed that SGEG2 presumably requires post-translational proteolysis in order to be processed into two mature peptides (SGEG2a and 2b). The three matrix peptides (SGEG1 reported previously, 2a, and 2b) were found to distribute throughout the cyst shell. The results of gene knockdown by RNAi and subsequent resistance to environmental stresses assays indicated that these matrix peptides are required for cyst shell formation and are involved in protecting the encysted embryos from environmental stress.

Conclusions/Significance

This study revealed that extracellular matrix peptides participate in protecting embryos from extreme salinity, UV radiation, large temperature fluctuations and dry environments, thereby facilitating their survival. The cyst shell provides an excellent opportunity to link the ecological setting of an organism to the underlying physiological and biochemical processes enabling its survival. The cyst shell material has also a high potential to become an excellent new biomaterial with a high number of prospective uses due, specifically, to such biological characteristics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号