首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of natural and environmental estrogens on endothelin synthesis in bovine oviduct cells
Authors:Reinhart Karin C  Dubey Raghvendra K  Cometti Barbara  Keller Paul J  Rosselli Marinella
Affiliation:Department of Obstetrics and Gynecology, Clinic for Endocrinology, University Hospital, 8091 Zurich, Switzerland.
Abstract:Endothelin-1 (ET-1), a vasoconstrictor and mitogenic peptide that plays an important role within the endocrine/reproductive system, is synthesized by oviduct cells and regulates tubal contractility. Because 17beta-estradiol (estradiol) regulates oviduct function by influencing the synthesis of autocrine/paracrine factors, estradiol may also regulate ET-1 synthesis. Furthermore, environmental estrogens (EEs; phytoestrogens and xenoestrogens), which structurally resemble estradiol and possess estrogenic activity, may mimic the effects of estradiol on ET-1 synthesis and may influence the reproductive system. Using cultures of bovine oviduct cells (epithelial cells:fibroblasts, 1:1), we investigated and compared the modulatory effects of estradiol, phytoestrogens, and xenoestrogens on ET-1 synthesis and determined whether these effects were estrogen receptor (ER) mediated. A quantitative ELISA for ET-1 in the culture medium revealed that 17beta-estradiol inhibits ET-1 synthesis in a concentration-dependent manner (4-400 nmol/L). In contrast to estradiol, ET-1 synthesis was induced in cell cultures treated with xenoestrogens in the following order of potency (0.1 micromol/L): 4-hydroxy-trichlorobiphenyl > 4-hydroxy-dichlorobiphenyl > trichlorobiphenyl. The stimulatory effects of xenoestrogens on ET-1 production were mimicked by the phytoestrogens biochanin-A and genistein but not by formononetin, equol, and daidzein. The oviduct cells expressed both ERs (alpha and beta), but the modulatory effects of estradiol, but not EEs, on ET-1 synthesis were blocked by ICI-182 780 (1 microM), a pure ER antagonist. Our results provide evidence that estradiol inhibits ET-1 synthesis in oviduct cells via an ER-dependent mechanism, whereas, EEs induce ET-1 synthesis via an ER-independent mechanism. The contrasting effects of EEs on ET-1 synthesis suggests that EEs may act as endocrine modulators/disruptors and may have deleterious effects on the reproductive system by adversely influencing the biology and physiology of the oviduct.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号