首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effects of thiazolidinediones on vascular smooth muscle cell activation by angiotensin II
Authors:Hattori Y  Akimoto K  Kasai K
Institution:Department of Endocrinology and Metabolism, Dokkyo University School of Medicine, Mibu, Tochigi, Japan. yhattori@dokkyomed.ac.jp
Abstract:Angiotensin II (Ang II) stimulates the activation of extracellular signal-regulated kinase (ERK), a subgroup of the mitogen-activated protein kinase (MAPK) family, in cultured vascular smooth muscle cells (VSMC). This ERK activation was recently shown to be a critical regulatory factor for Ang II-mediated migration and growth. It has been demonstrated that the thiazolidinedione troglitazone (TRO) blocked Ang II-induced DNA synthesis and migration in VSMC. Here we provide evidence for TRO to inhibit Ang II-induced ERK activation which was suggested to constitute the mechanism by which this agent blocks Ang II-induced VSMC growth and migration. We have found that pretreatment with PD98059, which selectively blocks the activity of ERK pathway at the level of MAPK kinase, decreased Ang II-induced AP-1 activation and that TRO is capable of inhibiting Ang II-induced AP-1 activation. On the other hand, the other thiazolidinediones pioglitazone (PIO) and rosiglitazone (ROSI) had little effect on Ang II-induced activation of ERK or AP-1, suggesting the inhibitory effects of TRO on VSMC activation by Ang II be independent of the peroxisome proliferator-activated receptor-gamma (PPARgamma) for which thiazolidinediones are ligands. Ang II-induced ERK activation was inhibited by protein kinase C (PKC)-specific inhibitor GF109203X, while TRO was also able to block PKC activator phorbol 12 myristate 13-acetate (PMA)-induced ERK activation. Accordingly, TRO may inhibit Ang II-induced MAPK activation at least partly by an inhibition of PKC. These results support the assumption that by targeting MAPK activation, TRO may inhibits the critical signaling steps leading to restenosis and atherosclerosis that may result in part from dysregulated VSMC growth and migration induced by Ang II.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号