首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of amino acid metabolism in an air-breathing catfish,Clarias batrachus in response to exposure to a high concentration of exogenous ammonia
Authors:Saha Nirmalendu  Dutta Supiya  Bhattacharjee Arundhati
Institution:Department of Zoology, Biochemical Adaptation Laboratory, North-Eastern Hill University, Shillong 793 022, India. nsaha@nehu.ac.in
Abstract:The air-breathing ureogenic walking catfish (Clarias batrachus) faces various environmental constraints throughout the year leading to the problem of accumulation of toxic ammonia. In the present study, the possible role of conversion of accumulated ammonia to various non-essential free amino acids (FAAs) was tested in this fish under hyper-ammonia stress caused by exposing the fish at 25 mM NH(4)Cl for 7 days. Significant accumulation of ammonia of approximately two- to threefold was observed in different tissues (except in the brain), which was accompanied with the significant accumulation of non-essential FAAs in the NH(4)Cl-exposed fish. There was approximately two- to threefold increase of non-essential FAAs in different tissues and in the plasma of the NH(4)Cl-exposed fish compared to the control fish after 7 days of exposure, which was mainly attributable to the increase of Asp, Ala, Gly, Glu, Gln and taurine (Tau) concentrations in general, with certain tissue-specific variations. This was also accompanied with significant increase of activity of certain amino acid metabolism-related enzymes such as the glutamine synthetase (approx. two- to threefold), glutamate dehydrogenase (ammonia utilizing direction) (approx. twofold), aspartate and alanine aminotransaminases (approx. twofold) mainly in the liver, kidney and muscle of the NH(4)Cl-exposed fish. Thus, it appears that the walking catfish has the capacity of active conversion of accumulated ammonia to non-essential FAAs under condition of high concentrations of external ammonia. However, the increase of urea excretion rate due to active conversion of ammonia to urea via the induced urea cycle appears to be quantitatively much more important pathway than the increase of tissue levels of FAAs in dealing with a severe ammonia load.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号