Human erythrocyte Ca2+-Mg2+-ATPase: mechanism of stimulation by Ca2+. |
| |
Authors: | T J Lynch W Y Cheung |
| |
Affiliation: | Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523 USA |
| |
Abstract: | We have critically evaluated hydrodynamic data from 21 proteins whose molecular dimensions are known from X-ray crystallography. We present two useful equations relating the molecular weights and sedimentation coefficients of globular proteins. The hydrodynamic data combined with data for small molecules from the literature indicate that failure of the Stokes equation occurs only for molecular weights <850. Calculated hydration values for the 21 proteins have a mean value and standard deviation of 0.53 ± 0.26 g H2O/g protein. Furthermore, statistical arguments indicate that only 5.3% of the variance is due to experimental error. The mean value and especially the dispersion of values are in sharp contrast to the values 0.36 ± 0.04 obtained by others from nmr measurements on frozen protein solutions. Hydration values calculated from nmr measurements are closely correlated with the number of charged and polar amino acid residues. In contrast to this result, our analysis of the amino acid compositions of the four proteins with the lowest hydration and the four monomeric proteins with the highest shows that the range of values we observe cannot be accounted for on the basis of amino acid composition. In fact there appears to be a weak correlation between the number of apolar residues and hydrodynamic hydration. We therefore conclude that the dispersion must result from variations in fine details of the surface structures of individual proteins. We propose a model of hemispherical clathrate cages which if correct, would account for the differences in the data obtained by these two methods. |
| |
Keywords: | Address correspondence to this author. |
本文献已被 ScienceDirect 等数据库收录! |
|