首页 | 本学科首页   官方微博 | 高级检索  
   检索      

XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks
作者姓名:Horton JK  Watson M  Stefanick DF  Shaughnessy DT  Taylor JA  Wilson SH
作者单位:[1]Laboratory of Structural Biology NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA [2]Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
摘    要:Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1^-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (pol β) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS- treated XRCC1^-/-, and to a lesser extent in pol β^-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and polβ^-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1^-/- cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC 1 to sites of DNA damage.

关 键 词:DNA  脱氧核糖核酸  细胞毒素  保护方法
修稿时间:2008-01-01

XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks
Horton JK,Watson M,Stefanick DF,Shaughnessy DT,Taylor JA,Wilson SH.XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks[J].Cell Research,2008,18(1):48-63.
Authors:Horton Julie K  Watson Mary  Stefanick Donna F  Shaughnessy Daniel T  Taylor Jack A  Wilson Samuel H
Institution:Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Abstract:Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1(-/-) mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase beta (pol beta) is specific to this pathway, whereas pol beta is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1(-/-), and to a lesser extent in pol beta(-/-) cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and pol beta(-/-) cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1(-/-) cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.
Keywords:
本文献已被 维普 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号