Effect of inhibitory activity of mutation at reaction site P4 of the Streptomyces subtilisin inhibitor, SSI |
| |
Authors: | S Kojima I Kumagai K Miura |
| |
Affiliation: | Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Japan. |
| |
Abstract: | The protein Streptomyces subtilisin inhibitor, SSI, efficiently inhibits a bacterial serine protease, subtilisin BPN'. We recently demonstrated that functional change in SSI was possible simply by replacing the amino acid residue at the reactive P1 site (methionine 73) of SSI. The present paper reports the additional effect of replacing methionine 70 at the P4 site of SSI (Lys73) on inhibitory activity toward two types of serine proteases, trypsin (or lysyl endopeptidase) and subtilisin BPN'. Conversion of methionine 70 at the P4 site of SSI(Lys73) to glycine or alanine resulted in increased inhibitory activity toward trypsin and lysyl endopeptidase, while replacement with phenylalanine weakened the inhibitory activity toward trypsin. This suggests that steric hindrance at the P4 site of SSI(Lys73) is an obstacle for its binding with trypsin. In contrast, the same P4 replacements had hardly any effect on inhibitory activity toward subtilisin BPN'. Thus the subsite structure of subtilisin BPN' is tolerant to these replacements. This contrast in the effect of P4 substitution might be due to the differences in the S4 subsite structures between the trypsin-like and the subtilisin-like proteases. These findings demonstrate the importance of considering structural complementarity, not only at the main reactive site but also at subsites of a protease, when designing stronger inhibitors. |
| |
Keywords: | |
|
|