首页 | 本学科首页   官方微博 | 高级检索  
     


The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces
Authors:Eyal Arbely   Hannes Neuweiler   Timothy D Sharpe   Christopher M Johnson   Alan R Fersht
Affiliation:1Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge, CB2 0QH, United Kingdom;2Cambridge Chemical Laboratories, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
Abstract:Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier‐limited apparent two‐state transition, analogous to its bacterial homologues. The high positive surface‐charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native‐state movement. The electrostatic strain was alleviated at high solution‐ionic‐strength by Debye‐Hückel screening. Differences in ionic‐strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade‐off between protein function and stability during protein evolution.
Keywords:fast protein folding  Coulomb interactions  Debye‐Hückel screening  barrier‐limited folding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号