首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta
Authors:Biswas Gopa  Anandatheerthavarada Hindupur K  Zaidi Mone  Avadhani Narayan G
Institution:Dept. of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Abstract:Mitochondrial genetic and metabolic stress causes activation of calcineurin (Cn), NFAT, ATF2, and NFkappaB/Rel factors, which collectively alter the expression of an array of nuclear genes. We demonstrate here that mitochondrial stress-induced activation of NFkappaB/Rel factors involves inactivation of IkappaBbeta through Cn-mediated dephosphorylation. Phosphorylated IkappaBbeta is a substrate for Cn phosphatase, which was inhibited by FK506 and RII peptide. Chemical cross-linking and coimmunoprecipitation show that NFkappaB/Rel factor-bound IkappaBbeta forms a ternary complex with Cn under in vitro and in vivo conditions that was sensitive to FK506. Results show that phosphorylation at S313 and S315 from the COOH-terminal PEST domain of IkappaBbeta is critical for binding to Cn. Mutations at S313/S315 of IkappaBbeta abolished Cn binding, inhibited Cn-mediated increase of Rel proteins in the nucleus, and had a dominant-negative effect on the mitochondrial stress-induced expression of RyR1 and cathepsin L genes. Our results show the distinctive nature of mitochondrial stress-induced NFkappaB/Rel activation, which is independent of IKKalpha and IKKbeta kinases and affects gene target(s) that are different from cytokine and TNFalpha-induced stress signaling. The results provide new insights into the role of Cn as a critical link between Ca2+ signaling and NFkappaB/Rel activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号