首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of water of hydration fractions in rabbit skeletal muscle with age and time of post-mortem by centrifugal dehydration force and rehydration methods
Authors:Cameron Ivan L  Short Nicholas J  Fullerton Gary D
Affiliation:Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA. cameron@uthscsa.edu
Abstract:Centrifugal dehydration force (CDF) and rehydration isotherm (RHI) methods were used to measure and characterize hydration fractions in rabbit psoas skeletal muscle. The CDF method assessed fluid flow rate from rabbit muscle and hydration capacity of the fractions. Bulk and multiple non-bulk water fractions were identified. The non-bulk water was divisible into the following fractions: two outer non-bulk fractions, a main chain proteins backbone or double water bridge fraction, and a single water bridge fraction. The total non-bulk water amounts to about 85% of the total water in the muscle. The sizes of the water fractions (in g water/g dry mass) agree with a recently proposed molecular stoichiometric hydration model (SHM) applicable to all proteins in and out of cells (Fullerton GD, Cameron IL. Water compartments in cells. Methods Enzymol, 2007; Cameron IL, Fullerton GD. Interfacial water compartments on tendon/collagen and in cells. In: Pollack GH, Chin WC, editors. Phase transitions in cells. Dordrecht, The Netherlands: Springer, 2008). Age of the rabbit significantly slowed the flow rate of the outer non-bulk water fraction by about 50%. Also, muscle of the older rabbit (26 weeks vs. 12 weeks old) had less bulk water and less outer non-bulk water but the same amount of main chain backbone water compared to muscle of the younger rabbit. Increase in time post-mortem from 30min to 4h resulted in rigor mortis and a significantly slower flow rate of water from the outer non-bulk water fraction, which is attributed to muscle contraction, increased packing of contractile elements and increased obstructions to flow of fluid from the muscle fibers.
Keywords:Hydration  Myocytes  Muscle  Flow rate  Dehydration  Aging  Post‐mortem
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号