首页 | 本学科首页   官方微博 | 高级检索  
     


Functional Role of Bradyrhizobium japonicum Trehalose Biosynthesis and Metabolism Genes during Physiological Stress and Nodulation
Authors:Masayuki Sugawara  Eddie J. Cytryn  Michael J. Sadowsky
Affiliation:Department of Soil, Water, and Climate,1. Microbial and Plant Genomics Institute,2. BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 551083.
Abstract:Trehalose, a disaccharide accumulated by many microorganisms, acts as a protectant during periods of physiological stress, such as salinity and desiccation. Previous studies reported that the trehalose biosynthetic genes (otsA, treS, and treY) in Bradyrhizobium japonicum were induced by salinity and desiccation stresses. Functional mutational analyses indicated that disruption of otsA decreased trehalose accumulation in cells and that an otsA treY double mutant accumulated an extremely low level of trehalose. In contrast, trehalose accumulated to a greater extent in a treS mutant, and maltose levels decreased relative to that seen with the wild-type strain. Mutant strains lacking the OtsA pathway, including the single, double, and triple ΔotsA, ΔotsA ΔtreS and ΔotsA ΔtreY, and ΔotsA ΔtreS ΔtreY mutants, were inhibited for growth on 60 mM NaCl. While mutants lacking functional OtsAB and TreYZ pathways failed to grow on complex medium containing 60 mM NaCl, there was no difference in the viability of the double mutant strain when cells were grown under conditions of desiccation stress. In contrast, mutants lacking a functional TreS pathway were less tolerant of desiccation stress than the wild-type strain. Soybean plants inoculated with mutants lacking the OtsAB and TreYZ pathways produced fewer mature nodules and a greater number of immature nodules relative to those produced by the wild-type strain. Taken together, results of these studies indicate that stress-induced trehalose biosynthesis in B. japonicum is due mainly to the OtsAB pathway and that the TreS pathway is likely involved in the degradation of trehalose to maltose. Trehalose accumulation in B. japonicum enhances survival under conditions of salinity stress and plays a role in the development of symbiotic nitrogen-fixing root nodules on soybean plants.Rhizobia induce the formation of nodules on the roots of legume plants, in which atmospheric nitrogen is fixed and supplied to the host plant, thereby enhancing growth under nitrogen-limiting conditions. The symbiotic interaction between rhizobia and their cognate leguminous plants is important for agricultural productivity, especially in less developed countries. However, physiological stresses, such as desiccation and salinity, negatively affect these symbiotic interactions by limiting nitrogen fixation (44). The osmotic environment within the rhizosphere may affect root colonization, infection thread development, nodule development, and the formation of effective N2-fixing nodules (21). Moreover, when legume seeds are inoculated with appropriate rhizobial strains prior to planting in the field, the vast majority of nodules produced are often not formed by the inoculant bacteria but rather by indigenous strains in the soil (36). This is in part due to the death of inoculant strains from rapid seed coat-mediated desiccation. Therefore, improvement of the survival of rhizobia under conditions of physiological stresses may promote biological nitrogen fixation and enhance plant growth.Rhizobia synthesize and accumulate compatible solutes, including trehalose, in response to desiccation and solute-mediated physiological stresses (5, 21, 42). Trehalose, a nonreducing disaccharide with an α,α-1,1 linkage between the two glucose molecules, has been shown to protect cell membranes and proteins from stress-induced inactivation and denaturation (8, 23, 24). The relationship between trehalose accumulation and symbiotic phenotype is dependent on rhizobial species and host genotype. Suarez et al. (39) reported an increase in root nodule number and nitrogen fixation by Phaseolus vulgaris inoculated with a trehalose-6-phosphate synthase-overexpressing strain of Rhizobium etli. In contrast, trehalose accumulation in Rhizobium leguminosarum and Sinorhizobium meliloti cells did not result in an increase in nitrogen-fixing nodules but led to enhancement of competitiveness on clover and on certain alfalfa genotypes, respectively (1, 16, 20).Four trehalose biosynthetic pathways, mediated by OtsAB, TreS, TreYZ, and TreT, have been reported thus far for prokaryotes (8, 25). The OtsAB pathway results in the condensation of glucose-6-phosphate with UDP-glucose by trehalose-6-phosphate synthase (OtsA) to form trehalose-6-phosphate. Trehalose is subsequently formed from trehalose-6-phosphate by the action of trehalose-6-phosphate phosphatase (OtsB). The TreS pathway involves a reversible transglycosylation reaction in which trehalose synthase (TreS) converts maltose, a disaccharide with α,α-1,4 linkage between the two glucose molecules, to trehalose. The third pathway, mediated by TreYZ, involves the conversion of maltodextrins into trehalose. The terminal α-1,1-glycosylic bond at the end of the maltodextrin polymer is hydrolyzed by maltooligosyltrehalose synthase (TreY), and trehalose is subsequently released from the end of the polymer via hydrolysis by maltooligosyltrehalose trehalohydrolase (TreZ). More recently, a trehalose glycosyltransferring synthase (TreT) was shown to catalyze the reversible formation of trehalose from ADP-glucose and glucose (25).In addition to biosynthesis, Gram-negative bacteria have also been reported to have trehalose degradation systems. Typically, trehalose is hydrolyzed into two glucose moieties by periplasmic and cytoplasmic trehalase enzymes, TreA and TreF, respectively (13, 15). However, Sinorhizobium meliloti also uses ThuA and ThuB for trehalose utilization (16).Bradyrhizobium japonicum, the root nodule symbiont of soybeans, accumulates trehalose in cultured cells and bacteroids (34, 35). Biochemical studies indicated that B. japonicum has three independent trehalose biosynthetic pathways involving trehalose synthase (TreS), maltooligosyltrehalose synthase (TreYZ), and trehalose-6-phosphate synthetase (OtsAB) (38). Sequence analysis of the B. japonicum USDA 110 genome identified the genes that encode these biosynthetic pathways: otsAB (bll0322 to bll0323), two homologs of treS (blr6767 and bll0902), and treYZ (blr6770 to blr6771), but not treT (17). Orthologous gene sequences to the trehalose degradation genes treA, treF, and thuAB have not been found in the genome of B. japonicum USDA 110. Cytryn et al. (6) reported that expression of otsA, treS (blr6767), and treY genes were highly induced by desiccation stress. Moreover, the concentrations of these three enzymes increased when B. japonicum was cultured in the presence of salt (38). Trehalose concentration in B. japonicum has been reported to increase due to desiccation stress (6), and this sugar is purported to act as an osmoprotectant. The addition of exogenously supplied trehalose has been reported to enhance the survival of B. japonicum in response to desiccation and salinity stresses (9, 37). Despite this information, little is known about how the various trehalose biosynthetic pathways modulate stress tolerance and symbiotic performance in B. japonicum.The purpose of this study was to examine the functional role(s) of the B. japonicum trehalose biosynthetic pathways on stress survival by constructing single, double, and triple mutants and by producing strains that overexpress the trehalose biosynthesis enzymes. Here we report on the relationship between trehalose accumulation and physiological responses to salinity and desiccation stresses in mutant and overexpression strains and that mutations in the trehalose biosynthesis pathways altered the symbiotic performance of B. japonicum USDA 110 on soybeans. Results of these studies indicate that trehalose accumulation in B. japonicum plays a prominent role in the saprophytic and symbiotic competence of this agriculturally important soil bacterium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号