首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inducible Expression of Transmembrane Proteins on Bacterial Magnetic Particles in Magnetospirillum magneticum AMB-1
Authors:Tomoko Yoshino  Akiko Shimojo  Yoshiaki Maeda  Tadashi Matsunaga
Institution:Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
Abstract:Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs.Transmembrane proteins play critical roles in cellular metabolism, participating in processes such as ion transport, nutrient uptake, signal transduction, and intercellular communication. As evidence of the essential functions of these proteins, more than half of all drug targets have been shown to be transmembrane proteins, and the analysis of the interactions of transmembrane proteins and their ligands is one of the most promising avenues for the discovery of new drug candidates. As a means of producing sufficient amounts of transmembrane proteins for binding analyses, heterologous protein expression systems have been developed using Escherichia coli (10), yeast (16), insect, and mammalian (4) cells as hosts. Transmembrane proteins generally are expressed at low levels and are extremely hydrophobic, rendering the analysis of interactions with ligands very difficult. In all cases, the analysis of membrane proteins requires a lipid or similar synthetic environment to maintain the native structure and function of the proteins. The purification of transmembrane proteins from cells frequently is time-consuming and typically results in the loss of the proteins’ native conformation.Magnetospirillum magneticum AMB-1 synthesizes intracellular nanosized bacterial magnetic particles (BacMPs; 50 to 100 nm); these are surrounded by a lipid bilayer membrane and exhibit strong ferrimagnetism. Functional soluble proteins have been expressed on BacMP surfaces through gene fusion techniques (11, 21, 24, 27) using BacMP membrane proteins (MagA, Mms16, and Mms13) as anchor proteins; this approach permits heterologous proteins to be localized efficiently and oriented appropriately on BacMPs. In a previous report, we demonstrated the successful display of the D1 dopamine receptor, a G protein-coupled receptor possessing seven transmembrane domains, on BacMPs. Mms16-D1, an dopamine receptor fusion protein, was expressed under the mms16 promoter, and a ligand-binding assay was performed (28). The assembly of transmembrane proteins on magnetic particles provides significant advantages for binding assays, including the easing of the purification of target proteins from bacterial cells without the loss of native conformation and the availability of a fully automated bioassay using robotic magnetic separation. Despite these advantages, there are not enough studies for the overexpression of transmembrane proteins other than the D1 dopamine receptor in M. magneticum AMB-1 because of its difficulty. In other host cells, a system for controlling gene expression has been employed to overcome its difficulty, and some successful efforts had achieved this for crystal structure analysis (5, 15, 18). The lack of these systems for M. magneticum has hampered the extension of this application to other transmembrane proteins.In this study, the tetracycline-inducible expression system was adapted for displaying transmembrane proteins on BacMPs in M. magneticum AMB-1. Expression vectors carrying the tetracycline repressor gene (tetR) and the target gene under the control of a strong promoter and the tetracycline operator (tetO) sequence were constructed, and the function of the system was evaluated using reporter genes. Finally, this system was applied to the overexpression of the transmembrane protein, tetraspanin CD81. This is the first report of an inducible expression system in M. magneticum, and it the demonstrates efficient display of a transmembrane protein at the surface of BacMPs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号