首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Large-Scale Sequence Analysis of Hemagglutinin of Influenza A Virus Identifies Conserved Regions Suitable for Targeting an Anti-Viral Response
Authors:Leepakshi Sahini  Anna Tempczyk-Russell  Ritu Agarwal
Institution:1. Department of Process and Analytical Biochemistry, ChimericBio Incorporated, Long Island City, New York, United States of America.; 2. Department of Computational Biology and Chemistry, Accelrys Incorporated, San Diego, California, United States of America.;University of Minnesota, United States of America
Abstract:

Background

Influenza A viral surface protein, hemagglutinin, is the major target of neutralizing antibody response and hence a main constituent of all vaccine formulations. But due to its marked evolutionary variability, vaccines have to be reformulated so as to include the hemagglutinin protein from the emerging new viral strain. With the constant fear of a pandemic, there is critical need for the development of anti-viral strategies that can provide wider protection against any Influenza A pathogen. An anti-viral approach that is directed against the conserved regions of the hemaggutinin protein has a potential to protect against any current and new Influenza A virus and provide a solution to this ever-present threat to public health.

Methodology/Principal Findings

Influenza A human hemagglutinin protein sequences available in the NCBI database, corresponding to H1, H2, H3 and H5 subtypes, were used to identify highly invariable regions of the protein. Nine such regions were identified and analyzed for structural properties like surface exposure, hydrophilicity and residue type to evaluate their suitability for targeting an anti-peptide antibody/anti-viral response.

Conclusion/Significance

This study has identified nine conserved regions in the hemagglutinin protein, five of which have the structural characteristics suitable for an anti-viral/anti-peptide response. This is a critical step in the design of efficient anti-peptide antibodies as novel anti-viral agents against any Influenza A pathogen. In addition, these anti-peptide antibodies will provide broadly cross-reactive immunological reagents and aid the rapid development of vaccines against new and emerging Influenza A strains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号