首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic and Pathobiologic Characterization of Pandemic H1N1 2009 Influenza Viruses from a Naturally Infected Swine Herd
Authors:Hana M. Weingartl  Yohannes Berhane  Tamiko Hisanaga  James Neufeld  Helen Kehler  Carissa Emburry-Hyatt  Kathleen Hooper-McGreevy  Samantha Kasloff  Brett Dalman  Jan Bystrom  Soren Alexandersen  Yan Li  John Pasick
Affiliation:Canadian Food Inspection Agency (CFIA), National Centre for Foreign Animal Disease (NCFAD), 1015 Arlington Street, Winnipeg, Manitoba, Canada,1. Food Safety Division, Alberta Agriculture and Rural Development, Edmonton, Alberta, Canada,2. University of Manitoba, Department of Medical Microbiology, Winnipeg, Manitoba, Canada,3. National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Winnipeg, Canada4.
Abstract:Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号