首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A mariner-Based Transposon System for In Vivo Random Mutagenesis of Clostridium difficile
Authors:Stephen T Cartman  Nigel P Minton
Institution:Centre for Biomolecular Sciences, School of Molecular Medical Sciences, Nottingham Digestive Diseases Centre, NIHR Biomedical Research Unit, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Abstract:Understanding the molecular basis of Clostridium difficile infection is a prerequisite to the development of effective countermeasures. Although there are methods for constructing gene-specific mutants of C. difficile, currently there is no effective method for generating libraries of random mutants. In this study, we developed a novel mariner-based transposon system for in vivo random mutagenesis of C. difficile R20291, the BI/NAP1/027 epidemic strain at the center of the C. difficile outbreaks in Stoke Mandeville, United Kingdom, in 2003 to 2004 and 2004 to 2005. Transposition occurred at a frequency of 4.5 (±0.4) × 10−4 per cell to give stable insertions at random genomic loci, which were defined only by the nucleotide sequence TA. Furthermore, mutants with just a single transposon insertion were generated in an overwhelming majority (98.3% in this study). Phenotypic screening of a C. difficile R20291 random mutant library yielded a sporulation/germination-defective clone with an insertion in the germination-specific protease gene cspBA and an auxotroph with an insertion in the pyrimidine biosynthesis gene pyrB. These results validate our mariner-based transposon system for use in forward genetic studies of C. difficile.Clostridium difficile infection is widely recognized as the leading cause of health care-associated diarrhea in North America and Europe. Infection usually follows antibiotic treatment, which disrupts the native gastrointestinal microflora and thus allows C. difficile to proliferate. The emergence of so-called “epidemic” or “hypervirulent” strains of C. difficile over the last 5 to 10 years has compounded an already serious problem. Classed as BI/NAP1/027, these epidemic strains are believed to cause a more severe disease and lead to increased mortality and relapse rates (11, 20, 24).Understanding the genetic and molecular basis of C. difficile infection will be a crucial step in the development of effective countermeasures. Methods for directed gene inactivation in C. difficile have recently been described (7, 21). This has opened the way for reverse genetic studies, in which the exact role of a specific gene, hypothesized to be important in a given phenotype, can be elucidated experimentally. By way of contrast, forward genetic studies aim to identify the genetic basis of a particular phenotype without making any assumptions about the genes involved. In forward genetic studies, transposons are often used to generate libraries of random insertion mutants. Libraries are then screened to identify mutants that are defective in a particular phenotype. Identification of the gene or genes which have been inactivated by transposon insertion then implicates them as having a role in that particular phenotype. Recently, just such an approach was used to identify a novel toxin-regulatory locus in Clostridium perfringens (29). This study elegantly demonstrated the power of forward genetic studies in bacterial pathogens.A number of transposon mutagenesis systems have been described for Gram-positive bacteria (2, 3, 15, 16, 29, 32). Two different systems have recently been developed for use in C. perfringens (15, 29). Both are in vitro mutagenesis systems which rely on being able to transform the recipient organism. As such, they are not suitable for use in C. difficile because in the laboratory at present, recombinant DNA can be transferred into C. difficile only via conjugation. The conjugative transposons Tn916 and Tn5397 have been studied in C. difficile, but both have been found either to have a strong target site preference or to yield multiple insertions in individual clones (9, 30). Therefore, neither is well suited to generating libraries of random C. difficile mutants.We reasoned that a mariner-based transposon mutagenesis system would be an effective tool for generating libraries of random C. difficile mutants. The mariner-transposable element Himar1 has been shown to insert randomly into the genomes of many bacterial species (3, 6, 16, 17, 32). The cognate Himar1 transposase is the only factor required for transposition, which occurs via a cut-and-paste mechanism (13, 14). The transposon itself is defined by inverted terminal repeats (ITRs) at either end and inserts into a TA target site. This is highly appropriate for an organism with a low-GC content such as C. difficile. In this study, we have developed a novel mariner-based transposon system for in vivo random mutagenesis of C. difficile. Moreover, we have demonstrated the system in C. difficile R20291, the BI/NAP1/027 epidemic strain at the center of the C. difficile outbreaks in Stoke Mandeville, United Kingdom, in 2003 to 2004 and 2004 to 2005. This new genetic tool opens the way for forward genetic studies of C. difficile.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号