首页 | 本学科首页   官方微博 | 高级检索  
     


Docking studies on glycoside hydrolase Family 47 endoplasmic reticulum alpha-(1-->2)-mannosidase I to elucidate the pathway to the substrate transition state
Authors:Mulakala Chandrika  Nerinckx Wim  Reilly Peter J
Affiliation:Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA 50011, USA.
Abstract:Alpha-(1-->2)-mannosidase I from the endoplasmic reticulum (ERManI), a Family 47 glycoside hydrolase, is a key enzyme in the N-glycan synthesis pathway. Catalytic-domain crystal structures of yeast and human ERMan1s have been determined, the former with a hydrolytic product and the latter without ligands, with the inhibitors 1-deoxymannojirimycin and kifunensine, and with a thiodisaccharide substrate analog. Both inhibitors were bound at the base of the funnel-shaped active site as the unusual 1C4 conformer, while the substrate analog glycon is a 3S1 conformer. In the current study, AutoDock was used to dock alpha-D-mannopyranosyl-(1-->2)-alpha-D-mannopyranose with its glycon in chair (1C4,4C1), half-chair (3H2,3H4,4H3), skew-boat (OS2,3S1,5S1), boat (2,5B,3,OB,B1,4,B2,5), and envelope (3E,4E,E3,E4) conformations into the yeast ERManI active site. Both docked energies and forces on docked ligand atoms were calculated to determine how the ligand distorts to the transition state. From these, we can conclude that (1) both 1C4 and OS2 can be the starting conformers; (2) the most likely binding pathway is 1C4-->3H2-->OS2-->3,OB-->3S1-->3E; (3) the transition state is likely to be close to a 3E conformation.
Keywords:AutoDock   Carbohydrate conformation   Docking   Enzyme mechanism   GH47   Mannosidase   Structure-function relationship   Transition state
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号