首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A potent fluorescent ATP-like inhibitor of cAMP-dependent protein kinase
Authors:J C Wu  H Chuan  J H Wang
Institution:Bioenergetics Laboratory, State University of New York, Buffalo 14214-3094.
Abstract:The fluorescent ATP analogue 8-azido-2'-O-14C]dansyl-ATP ( 14C]AD-ATP) was used to probe the ATP-binding site in the catalytic (C) subunit of cAMP-dependent protein kinase. AD-ATP was found to inhibit the phosphotransferase activity of C subunit with extremely high specificity. Complete inhibition was observed when each mol of C subunit was covalently labeled with 1 mol of this fluorescent ATP analogue. The labeling can be accelerated by the presence of Mg2+ or Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), whereas high concentrations of ATP can almost completely protect the enzyme from AD-ATP. Detailed studies indicated that AD-ATP competes with ATP for binding to C subunit. Analysis of the kinetic data gave dissociation constants of 2.9 and 13 microM for AD-ATP and ATP bound to C subunit, respectively. AD-ATP has a fluorescence emission peak at 510 nm in pH 7.0 aqueous buffer containing 25% glycerol. After covalent binding to C subunit this emission peak shifts to 455 nm, which suggests that the label at ATP site is in an endogenous hydrophobic environment. Upon the binding of Mg2+ or Kemptide, the fluorescence of AD-ATP-labeled C subunit can be enhanced by 50 and 45%, respectively. This enhancement suggests that the binding of either the peptide substrate or Mg2+ induces conformational change at the active site of C subunit. Analysis of the fluorescence data shows that the values of Kd for Mg2+ and Kemptide bound to AD-ATP-labeled C subunit are 0.2 mM and 2.1 microM, respectively. The normal procedure for the preparation of the C subunit from the bovine heart muscle has been simplified to require only one-fifth of the usual working time to obtain the homogeneous enzyme with 70% yield from the crude extract.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号