首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An optimized procedure for efficient phage display of antibody fragments with a low folding efficiency
Authors:Hiroyoshi Kuba  Koji Furukawa  
Institution:aAge Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan;bMedical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
Abstract:We recently developed an efficient bacterial expression system for phagemid-coded antigen-binding fragments of antibody (Fabs) without the use of a helper bacteriophage. This system is characterized by an unusually long cultivation at a low temperature and gentle induction of Fab expression without the addition of the inducer isopropyl-β-D-thiogalactopyranoside (IPTG). This method allows for a high yield production of Fabs fused with phage gene III coat protein, even when the protein is defective in its folding ability. With this cultivation procedure, we aimed here at improving the production and selection efficiency of filamentous bacteriophages displaying functional Fabs on their surface (Fab-phages) that have high affinity but low folding ability. The Fab components of the Fab-phages used were clonally related but differed in their affinity and folding ability. The production of the functional Fab-phages was quantitatively evaluated under various culture conditions. With conventional phage particle preparation, the production of functional Fab-phages was significantly biased according to the folding ability of the displayed Fabs, and affinity-based biopanning was therefore unsuccessful. In contrast, with the present procedure employing cultivation at 25 °C for 16 h without IPTG induction, functional Fab-phages were produced without any such dependence on folding ability. With this optimized library, affinity-based biopanning was successful. Especially noteworthy, bead-based biopanning accurately discriminated between high affinity Fab-phages and Fab-phages with low or middling affinity. In obtaining Fab-phages with high affinity but low folding ability, these optimized procedures for both cultivation and selection were essential.
Keywords:Affinity maturation  Biopanning  Expression  Fab  Phage display  Stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号