首页 | 本学科首页   官方微博 | 高级检索  
     


A rapid method for tissue collection and high-throughput isolation of genomic DNA from mature trees
Authors:Josquin F. G. Tibbits  Luke J. McManus  Antanas V. Spokevicius  Gerd Bossinger
Affiliation:(1) School of Forest and Ecosystem Science, The University of Melbourne, 3363 Creswick, Victoria, Australia
Abstract:Collection of tissue and subsequent isolation of genomic DNA from mature tree species often proves difficult. DNA extraction from needles, leaves, or buds is recommended in many protocols. Collecting these tissues from mature trees generally requires the use of firearms or climbing if sampling is to be nondestructive. As a result, sample collection is a major expense of many tree-based projects. Tree (and plant) tissues generally contain large amounts of polysaccharides and phenolic compounds that are difficult to separate from DNA. Many methods aim to overcom these problems, with most involving extraction in buffers containing the nonionic detergent cetyltrimethyl-ammonium bromide (CTAB), followed by numerous steps to clean contaminants from the DNA, using organic solvents and differential salt precipitation. These steps are time-consuming, such that isolation of DNA becomes the bottleneck in many molecular studies. This paper presents a new, efficient, cambium collection method for tree species and a DNA extraction protocol based on that of Doyle and Doyle (1987), with follow-up purification using the Wizard nuclei lysis and protein precipitation solutions (Promega). Results show a significant improvement in yield and DNA purity compared with other published methods, with consistently high yields of pure genomic DNA and high sample throughput. The relatively low cost per extraction, no requirement for use of liquid nitrogen, no requirement for freezer storage, and long-term sample stability after collection are important additional benefits.
Keywords:DNA extraction  cambial scrapings   Eucalyptus    Pinus   tree sample collection
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号