首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in mechanical properties with DMSO-induced differentiation of HL-60 cells.
Authors:K R Hallows  R S Frank
Institution:Department of Biophysics, University of Rochester Medical Center, NY 14642.
Abstract:We measured changes in the deformability of human promyelocytic leukemic (HL-60) cells induced to differentiate for 5-6 days along the granulocyte pathway by 1.25% dimethylsulfoxide (DMSO). Differentiation resulted in an approximately 90% reduction in the transit times of the cells through capillary-sized pores over a range of aspiration pressures. Cell volume, as measured by two methods, decreased by an average of 35%. To account for the contribution of the volume decrease to the decrease in transit time, the liquid drop model, developed to describe neutrophil deformability, was used to calculate an apparent viscosity of the cells during this deformation. The apparent viscosity of both uninduced and induced HL-60 cells was a function of aspiration pressure, and an approximately 80% reduction in viscosity occurred with induction, as determined by regression analysis. The deformation rate-dependent viscosities of the induced cells were between 65 and 240 Pa-sec, values similar to those measured for circulating neutrophils. To assess the role of polymerized actin in these viscosity changes, intracellular F-actin content was measured, and the effect of dihydrocytochalasin B (DHB), an agent that disrupts actin polymerization, was determined. Despite the significant decrease in cellular viscosity, F-actin content per cell volume did not change significantly after induced differentiation. Treatment with 3 and 30 microM DHB lowered cellular F-actin content in a dose-dependent manner in both uninduced and induced cells. Cellular viscosity of both uninduced and induced cells decreased sharply with 3 microM DHB treatment (85% and 76% respectively). 30 microM DHB treatment caused a further significant reduction in the viscosity of uninduced cells, but for induced cells the additional decrease in viscosity was not significant. These data indicate that reductions in both cell volume and intrinsic viscosity contribute to the increased deformability of HL-60 cells with DMSO-induced differentiation. However, changes in the concentration of F-actin cannot account for the decrease in cellular viscosity that occurs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号