首页 | 本学科首页   官方微博 | 高级检索  
     


Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism
Authors:Hua Fang  Ha Tuanzhu  Ma Jing  Li Yan  Kelley Jim  Gao Xiang  Browder I William  Kao Race L  Williams David L  Li Chuanfu
Affiliation:Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA.
Abstract:TLRs play a critical role in the induction of innate and adaptive immunity. However, TLRs have also been reported to mediate the pathophysiology of organ damage following ischemia/reperfusion (I/R) injury. We have reported that TLR4(-/-) mice show decreased myocardial injury following I/R; however, the protective mechanisms have not been elucidated. We examined the role of the PI3K/Akt signaling pathway in TLR4(-/-) cardioprotection following I/R injury. TLR4(-/-) and age-matched wild-type (WT) mice were subjected to myocardial ischemia for 45 min, followed by reperfusion for 4 h. Pharmacologic inhibitors of PI3K (wortmannin or LY294002) were administered 1 h before myocardial I/R. Myocardial infarct size/area at risk was reduced by 51.2% in TLR4(-/-) vs WT mice. Cardiac myocyte apoptosis was also increased in WT vs TLR4(-/-) mice following I/R. Pharmacologic blockade of PI3K abrogated myocardial protection in TLR4(-/-) mice following I/R. Specifically, heart infarct size/area at risk was increased by 98% in wortmannin and 101% in LY294002-treated TLR4(-/-) mice, when compared with control TLR4(-/-) mice. These data indicate that protection against myocardial I/R injury in TLR4(-/-) mice is mediated through a PI3K/Akt-dependent mechanism. The mechanisms by which PI3K/Akt are increased in the TLR4(-/-) myocardium may involve increased phosphorylation/inactivation of myocardial phosphatase and tensin homolog deleted on chromosome 10 as well as increased phosphorylation/inactivation of myocardial glycogen synthase kinase-3beta. These data implicate innate immune signaling pathways in the pathology of acute myocardial I/R injury. These data also suggest that modulation of TLR4/PI3K/Akt-dependent signaling pathways may be a viable strategy for reducing myocardial I/R injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号