首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluation of bottom ash and composted manure blends as a soil amendment material
Authors:Mukhtar S  Kenimer A L  Sadaka S S  Mathis J G
Institution:Biological and Agricultural Engineering Department, Texas A&M University, 201 Scoates Hall, College Station, TX 77843-2117, USA. mukhtar@tamu.edu
Abstract:The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号