首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ggamma subunit-selective G protein beta 5 mutant defines regulators of G protein signaling protein binding requirement for nuclear localization
Authors:Rojkova Alexandra M  Woodard Geoffrey E  Huang Tzu-Chuan  Combs Christian A  Zhang Jian-Hua  Simonds William F
Institution:Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号