首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequencing XMET genes to promote genotype-guided risk assessment and precision medicine
Authors:Jin  Yaqiong  Chen  Geng  Xiao  Wenming  Hong  Huixiao  Xu  Joshua  Guo  Yongli  Xiao  Wenzhong  Shi  Tieliu  Shi  Leming  Tong  Weida  Ning  Baitang
Abstract:High-throughput next generation sequencing(NGS) is a shotgun approach applied in a parallel fashion by which the genome is fragmented and sequenced through small pieces and then analyzed either by aligning to a known reference genome or by de novo assembly without reference genome. This technology has led researchers to conduct an explosion of sequencing related projects in multidisciplinary fields of science. However, due to the limitations of sequencing-based chemistry, length of sequencing reads and the complexity of genes, it is difficult to determine the sequences of some portions of the human genome, leaving gaps in genomic data that frustrate further analysis. Particularly, some complex genes are difficult to be accurately sequenced or mapped because they contain high GC-content and/or low complexity regions, and complicated pseudogenes, such as the genes encoding xenobiotic metabolizing enzymes and transporters(XMETs). The genetic variants in XMET genes are critical to predicate interindividual variability in drug efficacy, drug safety and susceptibility to environmental toxicity. We summarized and discussed challenges, wet-lab methods, and bioinformatics algorithms in sequencing "complex" XMET genes, which may provide insightful information in the application of NGS technology for implementation in toxicogenomics and pharmacogenomics.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号