首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA
Authors:Van den Plas Dave  Ponsaerts Peter  Van Tendeloo Viggo  Van Bockstaele Dirk R  Berneman Zwi N  Merregaert Joseph
Affiliation:Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
Abstract:Introduction of Cre-recombinase in target cells is currently achieved by transfection of plasmid DNA or by viral-mediated transduction. However, efficiency of non-viral DNA transfection is often low in many cell types, and the use of viral vectors for transduction implies a more complex and laborious manipulation associated with safety issues. We have developed a non-viral non-DNA technique for rapid and highly efficient excision of LoxP-flanked DNA sequences based on electroporation of in vitro transcribed mRNA encoding Cre-recombinase. A K562-DSRed[EGFP] cell line was developed in order to measure Cre-mediated recombination by flow cytometric analysis. These cells have a stable integrated DSRed reporter gene flanked by two LoxP sites, and an EGFP reporter gene, which could only be transcribed when the coding sequence for DSRed was removed. The presented data show recombination efficiencies, as measured by appearance of EGFP-fluorescence, of up to 85% in Cre-recombinase mRNA-electroporated K562-DSRed[EGFP] cells. In conclusion, mRNA electroporation of Cre-recombinase is a powerful, safe, and clinically applicable alternative to current technologies used for excision of stably integrated LoxP-flanked DNA sequences.
Keywords:Electroporation   Cre-recombinase   mRNA electroporation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号