首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting protein oxidation sites with feature selection and analysis approach
Authors:Niu Shen  Hu Le-Le  Zheng Lu-Lu  Huang Tao  Feng Kai-Yan  Cai Yu-Dong  Li Hai-Peng  Li Yi-Xue  Chou Kuo-Chen
Institution:Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China.
Abstract:Protein oxidation is a ubiquitous post-translational modification that plays important roles in various physiological and pathological processes. Owing to the fact that protein oxidation can also take place as an experimental artifact or caused by oxygen in the air during the process of sample collection and analysis, and that it is both time-consuming and expensive to determine the protein oxidation sites purely by biochemical experiments, it would be of great benefit to develop in silico methods for rapidly and effectively identifying protein oxidation sites. In this study, we developed a computational method to address this problem. Our method was based on the nearest neighbor algorithm in which, however, the maximum relevance minimum redundancy and incremental feature selection approaches were incorporated. From the initial 735 features, 16 features were selected as the optimal feature set. Of such 16 optimized features, 10 features were associated with the position-specific scoring matrix conservation scores, three with the amino acid factors, one with the propensity of conservation of residues on protein surface, one with the side chain count of carbon atom deviation from mean, and one with the solvent accessibility. It was observed that our prediction model achieved an overall success rate of 75.82%, indicating that it is quite encouraging and promising for practical applications. Also, the 16 optimal features obtained through this study may provide useful clues and insights for in-depth understanding the action mechanism of protein oxidation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号