首页 | 本学科首页   官方微博 | 高级检索  
     


The prohormone proenkephalin possesses differential conformational features of subdomains revealed by rapid H-D exchange mass spectrometry
Authors:Lu Weiya D  Liu Tong  Li Sheng  Woods Virgil L  Hook Vivian
Affiliation:Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Abstract:Active enkephalin and related peptide hormones or neurotransmitters are generated by proteolytic processing of inactive prohormone precursors. Little is known about the relative accessibilities of prohormone cleavage sites and conformations of subdomains that undergo proteolytic processing. Therefore, this study investigated the conformational features of the prohormone proenkephalin (PE) by rapid hydrogen-deuterium exchange mass spectrometry (DXMS). DXMS analyzes rates of hydrogen exchange of the polypeptide backbone of PE with deuterium from D(2) O (heavy water) by mass spectrometry, accomplished at sub-second and multisecond time periods. Results showed differential accessibilities of cleavage sites and adjacent subdomains of PE to the aqueous environment. Importantly, protease cleavage sites of PE with greater relative accessibilities correspond to sites most readily cleaved by processing proteases to generate active peptide neurotransmitters. For comparison, peptides derived from PE (by pepsin digestion) displayed greater accessibility to the solvent environment, illustrated by their higher rates of H-D exchange compared to that of intact PE protein. The more limited H-D exchange accessibilities of PE protein, compared to peptides derived from PE, indicate that PE possesses tertiary conformation. These results demonstrate that differential tertiary conformations of PE subdomains undergo ordered proteolytic processing to generate active enkephalin peptides for cell-cell communication in the nervous and endocrine systems.
Keywords:proenkephalin  prohormone  peptide neurotransmitter  peptide hormone  neuropeptide  hydrogen‐deuterium exchange mass spectrometry  conformation  protease cleavage  aqueous environment
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号