首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EXAMINE: a computational approach to reconstructing gene regulatory networks
Authors:Deng Xutao  Geng Huimin  Ali Hesham
Institution:Department of Computer Science, College of Information Science and Technology, Peter Kiewit Institute 378, University of Nebraska at Omaha, Omaha, NE 68182-0116, USA. xdeng@mail.unomaha.edu
Abstract:Reverse-engineering of gene networks using linear models often results in an underdetermined system because of excessive unknown parameters. In addition, the practical utility of linear models has remained unclear. We address these problems by developing an improved method, EXpression Array MINing Engine (EXAMINE), to infer gene regulatory networks from time-series gene expression data sets. EXAMINE takes advantage of sparse graph theory to overcome the excessive-parameter problem with an adaptive-connectivity model and fitting algorithm. EXAMINE also guarantees that the most parsimonious network structure will be found with its incremental adaptive fitting process. Compared to previous linear models, where a fully connected model is used, EXAMINE reduces the number of parameters by O(N), thereby increasing the chance of recovering the underlying regulatory network. The fitting algorithm increments the connectivity during the fitting process until a satisfactory fit is obtained. We performed a systematic study to explore the data mining ability of linear models. A guideline for using linear models is provided: If the system is small (3-20 elements), more than 90% of the regulation pathways can be determined correctly. For a large-scale system, either clustering is needed or it is necessary to integrate information in addition to expression profile. Coupled with the clustering method, we applied EXAMINE to rat central nervous system development (CNS) data with 112 genes. We were able to efficiently generate regulatory networks with statistically significant pathways that have been predicted previously.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号