首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of glycine betaine in the protection of plants from stress: clues from transgenic plants
Authors:Sakamoto A  Murata N
Institution:Laboratory of Molecular Plant Biology, Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan and;Departmentof Regulation Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Abstract:The acclimation of a plant to a constantly changing environment involves the accumulation of certain organic compounds of low molecular mass, known collectively as compatible solutes, in the cytoplasm. The evidence from numerous investigations of the physiology, genetics, biophysics and biochemistry of plants strongly suggests that glycine betaine (GB), an amphoteric quaternary amine, plays an important role as a compatible solute in plants under various types of environmental stress, such as high levels of salts and low temperature. Plant species vary in their capacity to synthesize GB and some plants, such as spinach and barley, accumulate relatively high levels of GB in their chloroplasts while others, such as Arabidopsis and tobacco, do not synthesize this compound. Genetic engineering has allowed the introduction into GB-deficient species of biosynthetic pathways to GB from both micro-organisms and higher plants; this approach has facilitated investigations of the importance of GB in stress protection. In this review, we summarize recent progress in the genetic manipulation of the synthesis of GB, with special emphasis on the relationship between the protective effects of GB in vivo and those documented in vitro.
Keywords:Compatible solute  environmental stress  genetic engineering  stress tolerance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号