首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intraluminal pressure oscillation enhances subsequent airway contraction in isolated bronchial segments.
Authors:P B Noble  P K McFawn  H W Mitchell
Institution:Physiology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
Abstract:A period of deep inspiration in humans has been shown to attenuate subsequent bronchoconstriction, a phenomenon termed bronchoprotection. The bronchoprotective effect of deep inspiration may be caused though a depression in the force production of airway smooth muscle (ASM). We determined the response of whole airway segments and isolated ASM to a period of cyclic stretches. Isovolumetric contraction to electrical field stimulation (EFS) was assessed in porcine bronchial segments before and after intraluminal pressure oscillation from 5 to 25 cmH(2)O for 10 min at 0.5 Hz. Morphometry showed that this pressure oscillation stretched ASM length by 21%. After pressure oscillation, the response to EFS was not reduced but instead was modestly enhanced (P < 0.01). Airway responses to EFS returned to preoscillation levels 10 min after the end of oscillation. The increase in EFS response after pressure oscillation was not altered by the addition of indomethacin. In a separate experiment, we assessed isometric force in isolated ASM strips before and after length oscillation. The amplitude, frequency, and duration of length oscillation were similar to those induced in bronchial segments. In contrast to bronchial segments, length oscillation of ASM produced a significant depression in isometric force induced by EFS (P < 0.01). These results suggest that the response of ASM to length oscillation is modified by the airway wall. They also suggest that the phenomenon of bronchoprotection reported in some in vivo studies may not be an intrinsic property of the airway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号