首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut
Authors:Noda Satoko  Ohkuma Moriya  Yamada Akinori  Hongoh Yuichi  Kudo Toshiaki
Institution:Molecular Microbial Ecology Division, Bioscience Technology Center, RIKEN, Wako, Saitama 351-019, Japan.
Abstract:Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号