首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study
Authors:Wilson  J R; McCully  K K; Mancini  D M; Boden  B; Chance  B
Institution:Department of Medicine, University of Pennsylvania, Philadelphia 19104.
Abstract:Seventeen normal subjects performed maximal wrist flexion exercise with continuous monitoring of forearm muscle pH and H2PO4-, measured with 31P nuclear magnetic resonance, and muscle fatigue, expressed as a percentage of decline in maximal developed force. Four minutes of exercise (flexion duration = 1 s) reduced maximal developed force from 100 to 74 +/- 9% and pH from 6.99 +/- 0.04 to 6.17 +/- 0.33 and increased H2PO4- to 927 +/- 401% of resting levels. In all subjects, linear relationships were noted between developed force and pH (r = 0.90 +/- 0.08) and between developed force and H2PO4- (r = -0.89 +/- 0.08). Doubling the contraction duration to 2 s produced more rapid changes in developed force, pH, and H2PO4- but no change in the relationship of force to pH and H2PO4-. Two minutes of submaximal exercise before maximal exercise significantly reduced pH and increased H2PO4-. During subsequent maximal exercise, the relationship between developed force and H2PO4- remained unchanged. In contrast, the relationship between developed force and pH was shifted leftward; muscle pH remained lower throughout maximal exercise, and developed force remained comparable to that noted during control exercise. These observations suggest that muscle fatigue during intense short-term exercise is primarily caused by an increase in intramuscular H2PO4- rather than by a decrease in intramuscular pH.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号