首页 | 本学科首页   官方微博 | 高级检索  
     


Floral Inhibition of Biloxi Soybean During a 72-hour Cycle
Authors:Shumate W H  Reid H B  Hamner K C
Affiliation:Department of Botanical Sciences, University of California, Los Angeles, California 90024.
Abstract:The inhibitory effect of light interruptions given during the photophobe phases of a 72-hour cycle was studied with Biloxi soybean [Glycine max (L.) Merr.]. The basic 72-hour cycle consisted of 8 hours of light followed by 64 hours of darkness and was repeated 7 times. Supplementary white light treatments given at the twenty-fourth and/or forty-eighth hour of the cycle (photophil phases) promoted the flowering levels of the controls and kept light treatments given at the most inhibitory points from inhibiting flowering completely. Such supplementary light treatments did not affect the time of maximum sensitivity to light interruptions. When 30-minute light breaks were used, maximum inhibition occurred at the 16-, 43-, and 63-hour points. The duration of the light breaks affected the time of maximum inhibition when given during the second photophobe phase. The time of maximum inhibition occurred earlier with 4-hour light breaks than with either 3-minute or 2-hour light interruptions.

Three-minute red light interruptions produced essentially the same effect as 3-minute white light interruptions. Such treatments inhibited flowering completely in the first photophobe phase, inhibited flowering to only a small degree in the second photophobe phase, and inhibited flowering to an intermediate degree in the third photophobe phase. Far-red light interruptions strongly inhibited flowering in the first photophobe phase, especially when given early in the dark period. Three minutes of supplementary white light given at the twenty-fourth or forty-eighth hour of the cycle partially overcame the inhibitory effect of far-red light. Four hours of supplementary white light at these times completely overcame the far-red inhibition.

Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号