首页 | 本学科首页   官方微博 | 高级检索  
     


Symmetry-based resistance as a novel means of lower limb rehabilitation
Authors:Simon Ann M  Brent Gillespie R  Ferris Daniel P
Affiliation:Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-2214, USA. asimon@umich.edu
Abstract:Robotic devices hold much promise for use as rehabilitation aids but their success depends on identifying effective strategies for controlling human-robot interaction forces. We developed a robotic device to test a novel method of controlling interaction forces with the intent of improving force symmetry in the limbs. Users perform lower limb extensions against a computer-controlled resistive load. The control software increases resistance above baseline in proportion to lower limb force asymmetry (balance between left and right limb forces). As a preliminary trial to test the device and controller, we conducted two experiments on neurologically intact subjects. In experiment 1, one group of subjects received symmetry-based resistance while performing lower limb extensions (n=10). A control group performed the same movements with constant resistance (n=10). The symmetry-based resistance group improved lower limb symmetry during training (ANOVA, p<0.05), whereas the control subjects did not. In experiment 2, subjects (n=10) successfully used symmetry-based resistance to alter their lower limb force production towards a target asymmetry (ANOVA, p<0.05). These studies suggest that symmetry-based resistance may hold rehabilitation benefits after orthopedic or neurological injury. Specifically, performing strength training therapy with this controller may allow hemiparetic individuals to focus better on increasing strength and neuromuscular recruitment in their paretic limb while experiencing symmetric limb forces.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号