首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation
Authors:M Nasir Khan  Manzer H Siddiqui  F Mohammad  M Naeem  M Masroor A Khan
Institution:1. Department of Biology, College of Science, University of Tabuk, Tabuk, 74191, Kingdom of Saudi Arabia
2. Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
Abstract:Salinity stress affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of salinity, different strategies of the application of nutrients with plant hormones are being adopted. The present study was carried out with an aim to find out whether application of calcium chloride (CaCl2) and gibberellic acid (GA3) could alleviate the detrimental effects of salinity stress on plant metabolism. Fifteen days old plants were supplied with (1) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (control, T0); (2) 0 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T1); (3) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T2); (4) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (T3); (5) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T4); (6) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T5); (7) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 10?6 M GA3 (T6). To assess the response of the crop to NaCl, CaCl2 and GA3, plants were uprooted randomly at 60 days after sowing. The presence of NaCl in the growth medium decreased all the growth and physio-biochemical parameters, except electrolyte leakage, proline (Pro) and glycine betaine (GB) content, thiobarbituric acid reactive substances (TBARS), H2O2 content, activities of superoxide dismutase (SOD) and catalase (CAT) and leaf Na content, which exhibited an increase of 37.6, 29.3, 366.9, 107.5, 59.1, 17.1, 28.4 and 255.2%, respectively, compared to the control plants. However, application of CaCl2 in combination with GA3 appears to confer greater osmoprotection by the additive role with NaCl in Pro and GB accumulation. Although the activities of antioxidant enzymes (SOD, CAT and POX) were increased by salt stress, the combined application of CaCl2 and GA3 to salt-stressed plants further enhanced the activities of these enzymes by 25.1, 6.7 and 47.8%, respectively, compared to plants grown with NaCl alone. The present study showed that application of CaCl2 and GA3 alone as well as in combination mitigated the adverse effect of salinity, but combined application of these treatments proved more effective in alleviating the adverse effects of NaCl stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号