首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The investigation of the effects of counterions in protein dynamics simulations.
Authors:P Drabik  A Liwo  C Czaplewski  J Ciarkowski
Institution:Faculty of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952, Gdansk, Poland. drabol@chemik.cem.univ.gda.pl
Abstract:Molecular simulations able to exactly represent solvated charged proteins are helpful in understanding protein dynamics, structure and function. In the present study we have used two different starting structures of papain (a typical, stable, globular protein of intermediate net charge) and different modeling procedures to evaluate some effects of counterions in simulations. A number of configurations have been generated and relaxed for each system by various combinations of constrained simulated annealing and molecular dynamics procedures, using the AMBER force field. The analysis of trajectories shows that the simulations of solvated proteins are moderately sensitive to the presence of counterions. However, this sensitivity is highly dependent on the starting model and different procedures of equilibration used. The neutralized systems tend to evince smaller root mean square deviations regardless of the system investigated and the simulation procedure used. The results of parameterized fitting of the simulated structures to the crystallographic data, giving quantitative measure of the total charge influence on the stability of various elements of the secondary structure, revealed a clear scatter of different reactions of various systems' secondary structures to counterions addition: some systems apparently were stabilized when neutralized, while the others were not. Thus, one cannot unequivocally state, despite consideration of specific simulation conditions, whether protein secondary structures are more stable when they have neutralized charges. This suggests that caution should be taken when claiming the stabilizing effect of counterions in simulations other than those involving small, unstable polypeptides or highly charged proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号