首页 | 本学科首页   官方微博 | 高级检索  
     


Movement of Abscisic Acid Across the Plasmalemma and the Tonoplast of Guard Cells of Valerianella locusta
Authors:M. Baier  W. Hartung
Abstract:Uptake experiments and efflux compartmental analyses of abscisic acid (ABA) with acid treated epidermal peels of Valerianella locusta were performed to elucidate the mechanisms of transport of ABA across the plasmalemma and tonoplast of guard cells. ABA uptake across the plasmalemma is linearly correlated with external ABA concentration in the incubation medium. Under alkaline conditions ABA-uptake was not significantly above background, indicating that ABA uptake occurs mainly by diffusion of undissociated ABAH as the most permeable species, which is trapped afterwards in the alkaline cytosol as impermeable ABA?. Efflux analysis of ABA revealed a saturable component of ABA transfer across the tonoplast. A Woolf-Augustinsson-Hofstee analysis suggested the existence of two transport systems for ABA at the tonoplast. The high affinity transport system had a KM of 0.21 mol m?3 and a Vmax 85.8 amol ABA cell?1 h?1. Using the data of the uptake and efflux experiments we calculated the permeability coefficients of ABA for the plasmalemma and the tonoplast of guard cells, which are 2.46 10?7 m s–1 and 1.26 10?8m s?1, respectively. The distribution of the pH-probe (14C)-DMO between medium, cytosol and vacuole was investigated and used to calculate cytosolic and vacuolar pH. The vacuolar pH is too low to explain the high vacuolar ABA concentration by trapping of ABA?, whereas the cytosol is sufficiently alkaline to act as an efficient anion trap. Therefore we conclude that ABA transport across the guard cell tonoplast is catalyzed by a saturable uptake component.
Keywords:Abscisic acid  transport mechanism  guard cells  plasmalemma and tonoplast  saturable uptake component and diffusion  Valerianella locusta
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号