首页 | 本学科首页   官方微博 | 高级检索  
     


Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2
Authors:He Jun  Yu Bing  Zhang Keying  Ding Xuemei  Chen Daiwen
Affiliation:1. College of Life Science, China JiLiang University, Hangzhou 310018, China;2. College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;3. College of Life Science, Zhejiang University, Hangzhou 310058, China
Abstract:To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (α-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 °C that was 10 °C higher than the native Xyn2. The hybrid enzyme was stable at 60 °C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号