首页 | 本学科首页   官方微博 | 高级检索  
     


Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency
Authors:Albert Calbet  Andrey F. Sazhin  Jens C. Nejstgaard  Stella A. Berger  Zachary S. Tait  Lorena Olmos  Despoina Sousoni  Stamatina Isari  Rodrigo A. Martínez  Jean-Marie Bouquet  Eric M. Thompson  Ulf B?mstedt  Hans H. Jakobsen
Abstract:We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13–16 μg chlorophyll (chl) a l−1. In the control mesocosms, chl a remained below 1 μg l−1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号