首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Furanocoumarin metabolism in Papilio polyxenes: biochemistry,genetic variability,and ecological significance
Authors:M R Berenbaum  A R Zangerl
Institution:(1) Department of Entomology, University of Illinois, 320 Morrill Hall, 505 South Goodwin, 61801 Urbana, Il, USA
Abstract:The ubiquitous occurrence of series of biosynthetically related plant secondary compounds within individual species has given rise to the suggestion that such multiplicity is adaptive; one possible mechanism that would serve to maintain such within-plant diversity is analog synergism. In a series of experiments, we provide evidence that synergism may account for the presence of multiple structurally related furanocoumarins in apiaceous plants. The black swallowtail, Papilio polyxenes, feeds exclusively on plant species containing furanocoumarins. Growth of larvae fed parsley leaves treated with both xanthotoxin and angelicin, two furanocoumarins that co-occur widely in swallowtail hostplants, was significantly slower than that of larvae fed leaves with an equimolar concentration of either xanthotoxin or angelicin. A multivariate combination of growth, food consumption and frass excretion differed significantly between larvae fed leaves treated with both xanthotoxin and angelicin and larvae fed leaves treated with angelicin alone. In addition, we measured rates of in vitro cytochrome P450-mediated metabolism of three furanocoumarins — bergapten, xanthotoxin, and angelicin. While bergapten and xanthotoxin, both linear furanocoumarins, were metabolized at similar rates (8.07 and 9.86 nmoles/min/g fw caterpillar, respectively), angelicin, an angular furanocoumarin, was metabolized more slowly (2.76 nmoles/min/g fw caterpillar). When all three furanocoumarins were assayed together, overall rates of metabolism were significantly reduced, suggesting substrate inhibition. Thus, the pattern of growth of larvae is consistent with the pattern of in vitro metabolism and is evidence in support of analog synergism. In a separate experiment, metabolism of xanthotoxin and angelicin individually and together were compared in six maternal families. Again, angelicin was metabolized more slowly than xanthotoxin and each furanocoumarin inhibited metabolism of the other. That significant family effects were found for rates of metabolism and for the ratio of moles of angelicin metabolized for each mole of xanthotoxin metabolized raises the possibility that genetic variation exists for the rate and specificity of metabolism and suggests that insect herbivores may be able to adapt to analog synergism.
Keywords:Papilio polyxenes  Detoxification  Metabolism  Furanocoumarin  Herbivory
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号