首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorus metabolism in coral reef communities: exchange between the water column and bottom biotopes
Authors:Yu I Sorokin
Institution:(1) Zoology Department, University of Queensland, 4067 St Lucia, Qld;(2) Heron Island Research Station, University of Queensland, 4680 via Gladstone, Qld, Australia;(3) Present address: Oceanology Department Gelendzhik-7, 353470 Krasnodar District, Russia
Abstract:Exchange of phosphate between components of the reef bottom and the water column were studied on reefs around Heron Island (Great Barrier Reef), both in aquaria and in in situ enclosures, using radioactive phosphorus (32P) as a tracer. Living corals, dead corals, coral rubble overgrown with periphyton, and soft sediments of coral sand were used in experiments. In all of these components of bottom reef biotopes, two opposite flows of inorganic phosphate were recorded and measured, i.e. the rate of PO4-P uptake from water (Ac), and its release (Ae). At ambient PO4-P concentrations in water of 0.1– 0.3 µmoll–1, both flows varied in living corals and coral rubble between 10 and 70 µg P kg–1 h–1, 3–10 mg P m–2 day–1, and in coral sand between 10 and 30 µg P kg–1 h–1, or 2–7 mg P m–2 day–1. Under the latter concentration range (which is typical for coral reef areas), the reciprocal PO4-P flows almost balanced each other, so that net uptake (At) was very low. Often it approached zero or was positive, showing that a net PO4-P release had taken place. The uptake flow (Ac) in living coral was much more dependent on the PO4-P content in overlying water than was the release flow (Ae). The influence of conditions of illumination upon the values of Ac and Ae was comparatively low. The data obtained are used to discuss problems of phosphorus balance and dynamics in coral reef ecosystems.
Keywords:Cladocera  Chydoridae  taxonomy  hypogean waters  Yugoslavia  Slovenia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号