首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro effects of cycloheximide and luteinizing hormone on the estradiol-to-progesterone shift in follicular steroidogenesis
Authors:G S Greenwald  S C Wang
Affiliation:Department of Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City 66103.
Abstract:The objectives of this study were to establish a completely in vitro system that would simulate the in vivo effects of cycloheximide (cyclo) on preovulatory serum levels of estradiol (E2) (prolonged) and progesterone (P4) (reduced). Graafian follicles were removed from proestrous hamsters at 0900 h and incubated for a basal hour (Hour 1) with various doses of cyclo before the medium was replaced; in Hour 2, 100 ng luteinizing hormone (LH) was added with cyclo added every hour for 5 or 6 h. The endpoints were steroid levels/follicle/h per ml medium of P4, 17 alpha-hydroxyprogesterone (170HP), androstenedione (A), and E2. The goal was best accomplished with hourly addition of 400 ng cyclo, which reduced follicular protein synthesis by 76%. Cyclo suppressed P4 and 170HP and prolonged the accumulation of A and E2, in Hour 5 and Hour 6, correlated with sustained thecal C-17,20-lyase/17 alpha-hydroxylase as determined by enzyme assays. Cyclo therefore prevented the early demise of the enzyme complex after LH stimulation and hence prolonged the ability of the theca to provide androgens for conversion to E2 by the granulosa cells. Our earlier work established that one of the major effects of LH is to recruit the granulosa compartment as a source of C-21 steroids, and cyclo interferes with the availability of cholesterol to mitochondrial side-chain cleavage (Greenwald and Limback, 1984). Thus, cyclo affects follicular steroidogenesis through different mechanisms in theca and granulosa.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号