首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SUBMICROSCOPIC ORGANIZATION OF THE POSTSYNAPTIC MEMBRANE IN THE MYONEURAL JUNCTION : A Polarization Optical Study
Authors:Bertalan Csillik
Institution:From The Department of Anatomy, University Medical School, Szeged, Hungary.
Abstract:Cross-striated muscles of frogs and rats were fixed in 3.3 per cent lead nitrate solution. Frozen sections 30 micra thick were mounted in different media and observed by polarization microscopy. The subneural apparatus of myoneural junctions exhibits a strong birefringence in these sections. Birefringence is exerted by a highly organized lipoprotein framework (postsynaptic material) which builds up the "organites" (junctional folds) of the postsynaptic membrane. Synaptic cholinesterase is closely associated with this material. Freezing and/or formalin fixation results in a destruction of the molecular organization of the postsynaptic material, but does not influence the synaptic enzyme activity. It is hypothesized from this study that the junctional folds (postsynaptic "organites") consist of regularly arranged, sheet-like lamellar micellae in the frog and of less regular, mainly radially arranged submicroscopic units in the rat. The micellar organization as revealed by polarization analysis is in good agreement with the electron microscopic findings reported in the literature. Intramicellar protein molecules of the resting postsynaptic membrane are arranged longitudinally, lipids transversely. Supramaximal stimulation or treatment with acetylcholine + eserine results in a disorganization of proteins and a rearrangement of lipids. Denervation results in a rearrangement of lipids without any significant alterations of proteins. All these functional stresses influence only the molecular and not the micellar structure of the membrane. The function of the organized lipoprotein framework as an acetylcholine receptor is suggested.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号