首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamics of gelation of sickle cell deoxyhemoglobin.
Authors:P D Ross  J Hofrichter  W A Eaton
Institution:Laboratories of Molecular Biology and Chemical Physics National Institute of Arthritis, Metabolism and Digestive Diseases National Institutes of Health Bethesda, Md 20014, U.S.A.
Abstract:This paper describes the thermodynamic behavior of gels of deoxyhemoglobin S. The solubility of the protein with respect to assembled hemoglobin fibers has been measured using a sedimentation technique. The solubility in 0.15 m-potassium phosphate buffer (pH 7.15) is found to decrease with increasing temperature, attain a minimum value of 0.16 g cm?3 at 37 °C, and then increase at higher temperatures. The amount of polymer present at various hemoglobin concentrations and temperatures is presented as part of a phase diagram that may be useful for the calibration of other measurement techniques. The effects of varying pH and urea concentration upon the solubility have also been studied.The heat absorption accompanying gelation has been measured by scanning calorimetry. Using sedimentation data on the amount of polymer formed, molar enthalpy changes are obtained. There is a large negative heat capacity change of ? 197 cal deg. mol?1 and ΔH = 0 near 37 °C. Calorimetric molar enthalpy changes are found to agree with those calculated from the temperature dependence of the solubility by the van't Hoff equation.Our previous two-phase, two-component thermodynamic model of gelation is extended to include the effects of solution non-ideality. A large contribution to the activity of the hemoglobin in the solution phase results from the geometric effect of excluded volume. Incorporating solution phase non-ideality permits the calculation of standard state thermodynamic quantities for the gelation process at 37 °C: ΔGO ? ?3 k cal mol?1, ΔHO ~ 0, ΔSO ~ 10 cal deg.?1 mol?1. The excluded volume effect is also capable of explaining observations of the minimum gelling concentrations of hemoglobin mixtures containing deoxyhemoglobin S without requiring copolymerization of the non-S hemoglobin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号