首页 | 本学科首页   官方微博 | 高级检索  
     


An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data
Authors:Gorham Ronald D  Kieslich Chris A  Nichols Aaron  Sausman Noriko U  Foronda Marisse  Morikis Dimitrios
Affiliation:Department of Bioengineering, University of California, Riverside, CA 92521, USA.
Abstract:For systems involving highly and oppositely charged proteins, electrostatic forces dominate association and contribute to biomolecular complex stability. Using experimental or theoretical alanine-scanning mutagenesis, it is possible to elucidate the contribution of individual ionizable amino acids to protein association. We evaluated our electrostatic free energy calculations by comparing calculated and experimental data for alanine mutants of five protein complexes. We calculated Poisson-Boltzmann electrostatic free energies based on a thermodynamic cycle, which incorporates association in a reference (Coulombic) and solvated (solution) state, as well as solvation effects. We observe that Coulombic and solvation free energy values correlate with experimental data in highly and oppositely charged systems, but not in systems comprised of similarly charged proteins. We also observe that correlation between solution and experimental free energies is dependent on dielectric coefficient selection for the protein interior. Free energy correlations improve as protein dielectric coefficient increases, suggesting that the protein interior experiences moderate dielectric screening, despite being shielded from solvent. We propose that higher dielectric coefficients may be necessary to more accurately predict protein-protein association. Additionally, our data suggest that Coulombic potential calculations alone may be sufficient to predict relative binding of protein mutants.
Keywords:protein salvation  protein dielectric  continuum electrostatics  Coulombic free energy  solvation free energy  excessive charge  electrostatically‐driven association  alanine scan
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号