首页 | 本学科首页   官方微博 | 高级检索  
     


Energy-aware task scheduling in heterogeneous computing environments
Authors:Jing Mei  Kenli Li  Keqin Li
Affiliation:1. College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
2. National Supercomputing Center in Changsha, Changsha, Hunan, 410082, China
3. Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
Abstract:Efficient application scheduling is critical for achieving high performance in heterogeneous computing (HC) environments. Because of such importance, there are many researches on this problem and various algorithms have been proposed. Duplication-based algorithms are one kind of well known algorithms to solve scheduling problems, which achieve high performance on minimizing the overall completion time (makespan) of applications. However, they pursuit of the shortest makespan overly by duplicating some tasks redundantly, which leads to a large amount of energy consumption and resource waste. With the growing advocacy for green computing systems, energy conservation has been an important issue and gained a particular interest. An existing technique to reduce energy consumption of an application is dynamic voltage/frequency scaling (DVFS), whose efficiency is affected by the overhead of time and energy caused by voltage scaling. In this paper, we propose a new energy-aware scheduling algorithm with reduced task duplication called Energy-Aware Scheduling by Minimizing Duplication (EAMD), which takes the energy consumption as well as the makespan of an application into consideration. It adopts a subtle energy-aware method to search and delete redundant task copies in the schedules generated by duplication-based algorithms, and it is easier to operate than DVFS, and produces no extra time and energy consumption. This algorithm not only consumes less energy but also maintains good performance in terms of makespan compared with duplication-based algorithms. Two kinds of DAGs, i.e., randomly generated graphs and two real-world application graphs, are tested in our experiments. Experimental results show that EAMD can save up to 15.59 % energy consumption for HLD and HCPFD, two classic duplication-based algorithms. Several factors affecting the performance are also analyzed in the paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号