首页 | 本学科首页   官方微博 | 高级检索  
     


Intact human amniotic membrane differentiated towards the chondrogenic lineage
Authors:Andrea Lindenmair  Sylvia Nürnberger  Guido Stadler  Alexandra Meinl  Christa Hackl  Johann Eibl  Christian Gabriel  Simone Hennerbichler  Heinz Redl  Susanne Wolbank
Affiliation:1. Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstra?e 13, 1200, Vienna, Austria
2. Red Cross Blood Transfusion Service of Upper Austria, Krankenhausstra?e 7, 4017, Linz, Austria
3. Austrian Cluster for Tissue Regeneration, Vienna, Austria
4. Department of Traumatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
5. Bernhard Gottlieb University School of Dentistry, Sensengasse 2a, 1090, Vienna, Austria
6. Bio-Products and Bio-Engineering AG, Schottenring 10, 1010, Vienna, Austria
Abstract:Human amniotic membrane (hAM) represents a tissue that is well established as biomaterial in the clinics with potential for new applications in regenerative medicine. For tissue engineering (TE) strategies, cells are usually combined with inductive factors and a carrier substrate. We have previously recognized that hAM represents a natural, preformed sheet including highly potent stem cells. In the present approach for cartilage regeneration we have induced chondrogenesis in hAM in vitro. For this, hAM biopsies were cultured for up to 56 days under chondrogenic conditions. The induced hAM was characterized for remaining viability, glycosaminoglycan (GAG) accumulation using histochemical analysis, and a quantitative assay. Collagen I, II and X was immunohistochemically determined and cartilage-specific mRNA expression of (sex determining region Y-) box 9, cartilage oligomeric matrix protein (COMP), aggrecan (AGC1), versican (CSPG2), COL1A1, COL9A2, melanoma inhibitory activity (MIA), and cartilage-linking protein 1 (CRTL1) analyzed by quantitative real-time polymerase chain reaction. Human AM was successfully induced to accumulate GAG, as demonstrated by Alcianblue staining and a significant (p < 0.001) increase of GAG/viability under chondrogenic conditions peaking in a 29.9 ± 0.9-fold induction on day 56. Further, upon chondrogenic induction collagen II positive areas were identified within histological sections and cartilage-specific markers including COMP, AGC1, CSPG2, COL1A1, COL9A2, MIA, and CRTL1 were found upregulated at mRNA level. This is the first study, demonstrating that upon in vitro induction viable human amnion expresses cartilage-specific markers and accumulates GAGs within the biomatrix. This is a promising first step towards a potential use of living hAM for cartilage TE.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号