首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Change of the <Emphasis Type="Italic">N</Emphasis>-terminal codon bias combined with tRNA supplementation outperforms the selected fusion tags for production of human <Emphasis Type="SmallCaps">d</Emphasis>-amino acid oxidase as active inclusion bodies
Authors:" target="_blank">Weiyu Wang  Jiaqi Sun  Wenjun Xiao  Li Jiang  Ruyue Wang  Jun Fan
Institution:1.School of Life Science,Anhui Agricultural University,Hefei City,China
Abstract:

Objectives

To optimize the production of active inclusion bodies (IBs) containing human d-amino acid oxidase (hDAAO) in Escherichia coli.

Results

The optimized initial codon region combined with the coexpressed rare tRNAs, fusion of each of the N-terminal partners including cellulose-binding module, thioredoxin, glutathione S-transferase and expressivity tag, deletion of the incorporated linker, and improvement of tRNA abundance affected the production and activity for oxidizing d-alanine of the hDAAO in IBs. Compared with the optimized fusion constructs and expression host, IBs yields and activity were increased to 2.6- and 2.8-fold respectively by changing the N-terminal codon bias of the hDAAO. The insoluble hDAAO codon variant displayed the same substrate specificity as the soluble one for oxidizing d-alanine, d-serine and d-aspartic acid. The freshly prepared hDAAO codon variant was used for analyzing the l-serine racemization activity of the bacterially expressed maize serine racemase.

Conclusions

Optimization of the N-terminal codon bias combined with the coexpression of rare tRNAs is a novel and efficient approach to produce active IBs of the hDAAO.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号