首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sterol metabolism and oral epithelial cell growth
Authors:Gretchen B Caughman  George S Schuster  Thomas R Dirksen
Institution:(1) Department of Oral Biology, School of Dentistry, Medical College of Georgia, 30912 Augusta, Georgia
Abstract:Previous studies have demonstrated that as the density of cultured oral epithelial cells increases, there is a concomitant increase in phospholipids and cholesterol ester synthesis and a decrease in that of cholesterol and sterol precursors. Other studies have suggested that the effects of exogenous cholesterol sulfate may be similar to growth responses and influence metabolic steps related to cell density. To further examine this possibility, in the present study lipid synthesis was monitored in hamster cheek pouch epithelial cells in cultures established at different cells densities and in the presence of varying amounts of exogenous cholesterol sulfate. Cell 14C]acetate incorporation into lipids was measured in cultures established at four densities ranging from very subconfluent to very dense (postconfluent) in two media, Dulbecco’s modified Eagle’s medium (DMEM) with 5% fetal bovine serum and KSFM, a non-serum containing keratinocyte medium. Results indicated that the relative proportion of radiolabel incorporated into different lipid classes changed with cell density. In DMEM, the percentage of radiolabel incorporated into total phospholipids and fatty acids increased significantly with increasing cell density whereas percent incorporation into cholesterol, sterol precursors, and cholesterol esters significantly decreased. In KSFM cultures, proportionate phospholipids labeling was significantly increased in more dense cultures whereas cholesterol and cholesterol esters labeling was significantly decreased. In subconfluent and confluent cultures exposed to 10 or 25μM cholesterol sulfate, the relative proportions of phospholipid labeling also increased significantly compared to dimethyl sulfoxide (solvent) controls, whereas sterol precursors, fatty acids, and cholesterol esters labeling was signifcantly decreased. These results indicate that cholesterol sulfate can affect cellular lipid synthesis in a manner similar to that which occurs with increasing cell density, and strengthen the hypothesis that cholesterol sulfate may regulate lipid metabolic pathways related to growth and differentiation.
Keywords:lipids  cholesterol sulfate  cell density  epithelium
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号