Metal-1,4-dithio-2,3-dihydroxybutane chelates: novel inhibitors of the Rho transcription termination factor |
| |
Authors: | Weber Thomas P Widger William R Kohn Harold |
| |
Affiliation: | Department of Chemistry, University of Houston, Houston, Texas 77204-5641, USA. |
| |
Abstract: | Rho is an enzyme that is essential for the growth and survival of Escherichia coli, and bicyclomycin (1) is its only known selective inhibitor. We show that metal (Cd(2+), Ni(2+), and Zn(2+)) complexes of 1,4-dithio-2,3-dihydroxybutanes (2) serve as effective and potent rho inhibitors with I(50) values that can exceed that of 1. Maximal inhibition for ZnCl(2) and L-dithiothreitol (2a) corresponded to Zn(2):L-DTT stoichiometry. The I(50) value for the 2:1 Zn-L-DTT solution was 20 microM, which made it 3 times more potent than 1 (I(50) = 60 microM). Kinetic studies showed that a Zn-L-DTT solution functioned as a noncompetitive inhibitor with respect to ATP in the rho poly(C)-dependent ATPase assay and as a competitive inhibitor with respect to ribo(C)(10) in the poly(dC).ribo(C)(10)-stimulated ATPase assay. These findings demonstrated that both 1 and a Zn-L-DTT solution disrupted rho-mediated ATP hydrolysis but that they inhibit using different mechanisms. Substitution of L-DTT with 1,2-ethanedithiol in ZnCl(2) solutions led to a comparable loss of rho poly(C)-dependent ATPase activity, indicating that other metal chelates can serve as efficient inhibitors. The site and pathway of rho inhibition by the putative metal-1,4-dithio-2,3-dihydroxybutane chelates are discussed in light of the current data. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|